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Let E be a compact of CN and let L p be a modular functions space. In this paper
we consider the problem of analytic extension off E L p to a holomorphic function
defined on an open neighborhood of E. In particular, we generalize some of the
results obtained in [W. PleSniak, "Quasianalyticity in F-spaces of Integrable
Functions, Approximation, and Function Spaces" (Z. Ciesielski, Ed.), pp. 553-571,
Proceedings of the International Conference held in Gdansk, August 27-31,
PWN Warszawa, North-Holland, Amsterdam, 1979; W. Plesniak, "Leja's Type
Polynomial Condition and Polynomial Approximation in Orlicz Spaces,"
Ann. Polon. Math. 46 (1985), 268-278J for the case of Orlicz Spaces and in
[W. M. Kozlowski and G. Lewicki, "On Polynomial Approximation in Modular
Function Spaces" (J. Musielak, Ed.), pp.63-68, Proceedings of the International
Conference "Function Spaces" held in Poznan, August 1986, Teubner, Stuttgart,
1988J for the case of s-convex function modulars. © 1989 Academic Press, Inc.

INTRODUCTION

In this paper we consider the problem of analytic extension of measurable
functions. The idea of expressing some extension properties by means of
polynomial approximation has its origin in S. N. Bernstein's result from
1911: if a continuous function!: [0, 1] -+ e can be extended to a holo­
morphic function]: U -+ e such that U is an open neighborhood (in iC) of
[0,1] and ](x)=!(x) for XE [0,1], then lim SUPk~oo [dist ll .II Cf, Pk)]l/k

< 1. The symbol distll.ll(f, Pk ) denotes the supremum-norm distance
between the function ! and the class of all polynomials of degree not
greater than k. The above idea was then developed and generalized to the
case of compact subsets of en by J. Siciak [14, 15]. The first attempt to
obtain similar results for measurable functions and distances different from
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the supremum norm was done by W. Pldniak in 1985, who found some
conditions for Orlicz space L'" (qJ was assumed to be a L1 2-function). In this
paper we consider a large class of modular function spaces which contains
Orlicz spaces. In general, we prove some results without any convexity or
L1 2-assumptions; roughly speaking, this new approach consists in dealing
with a distance induced by a modular instead of that induced by a norm
or F-norm. This is much more convenient for applications since norms and
F-norms in modular spaces are not defined in a direct way.

Since the proofs exploit many ideas of both approximation theory and
modular space theory, we present a list of necessary definitions in the
preliminary Sections 1 and 2. Basic theorems on analytic extension have
been stated in Section 3 while in Section 4 we discuss some special cases
and examples. In Section 5 we deal with quasi-analytic functions in the
sense of Bernstein.

1

We will need the following definition.

DEFINITION 1.1 (See, e.g., [11, 13]). Let E be a Borel subset of the
space eN and let Jl be a Borel measure on E. We say that the pair (E, Jl)
satisfies the L *-condition (the L *-condition at a point a E it) if and only if
for every family ff of polynomials such that Jl(t E E: sUPp " jO Ip(t)1 = +00 }

= 0 and for every b > 1 there exist M> 0 and U an open neighborhood of
E (open neighborhood of a) such that

sup Ipi ~ Mb degp for every p E ff.
u

It is clear that if E is a compact subset of eN then the pair (E, Jl) satisfies
the L *-condition if and only if the pair (E, Jl) satisfies the L *-condition at
each point a E E.

Now we will give some examples (for a more complete list of examples
see [13]). By the famous polynomial lemma of Leja [6] we have the
following.

EXAMPLE 1.2. If E is a rectifiable Jordan arc in e and Jl is a length
measure over E then (E, Jl) satisfies L * at every point a E E.

By Fubini's theorem, from Example 1.2 we get

EXAMPLE 1.3. Let E be a subset of the space W (Rn is treated as a
subset of en such that en = IR n + ilRn). Let mn denote the Lebesgue
n-dimensional measure. (E, m n ) satisfies L * at a E E if there exists a non-
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singular affine mapping I: In -+ ~n such that a E l(In) c E u {a}, where In is
the nth Cartesian power of 1= [0, 1]. In particular, for every bounded
convex set E c ~n such that int E =F 0 or else for every bounded Lipschitz
domain (of class Lip 1) the pair (E, m n ) satisfies L * at every point a E E.
We add that the condition L * is invariant under nondegenerate
holomorphic mappings from en to en (see [9,13]).

We also have the following geometrical criterion for L* (see [12,13]).

THEOREM 1.4. Given a E E, suppose that there exists an analytic mapping
h: [0, 1] -+ E such that h(O) = a. The pair (E, /1) satisfies L* at a E E if the
pair (E, /1) satisfies L* at h(t) for each tE (0,1].

In Sections 3 and 5 we also need the following

DEFINITION 1.5. Let E be a compact subset of en, Put E= {t E en:
Ip(t)1 ~ IlpIIE for every polynomial p} (11p11E denotes the supremum norm
on the set E). We say that E is polynomially convex if E= E.

In the case when E is a compact subset of C, by the Runge theorem, we
have: E is polynomially convex if and only if e v {00 }\E is connected.

If E c en is compact, polynomially convex set the following theorem is
true. H(E) denotes the class of all complex-valued functions on E that can
be extended to holomorphic functions in a neighborhood at E.

THEOREM 1.6 (See [14, 15]). IffEH(E) then limsuPk~oo[distll'lIlf,Pdrik

< 1, where Pk denotes the class of all polynomials of degree ~k.

2

Let us recall some basic concepts of the theory of modular spaces
after [8]. Let X be a real or complex vector space; a functional
p: X -+ [0, +00] is called a modular, if there holds for arbitrary x, y E X:

1. p(O) = 0,

2. p(ax) = p(x) for every aE K (K = ~ or K = C) such that lal = 1,

3. p(ax + py) ~ p(x) + p(y) for a, P~ 0, a + P= 1.

If in place of 3 there holds for some s E (0, 1]

3'. p(ax+py)~aSp(x)+psp(y) for a,p~O, as +ps=l, then the
modular p is called s-convex; I-convex modular is called convex. If p is a
modular in X then Xp={xEX:lim;.~op(A.x)=O}is called a modular
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space; X p is a vector subspace of X. For a modular p in X we may define
the F-norm 1·1 p by the formula

Ixlp = inf{ u > 0: p(x/u) ~ u}.

If p is an s-convex modular then the functional

Ixl ~ = inf{ u > 0: p(x/ul/s ) ~ 1}

is an s-homogeneous norm in X p (a norm for s= 1) called the Luxemburg
norm. We note the following basic properties of the above-introduced
notions.

THEOREM 2.1 (See [8, Th.1.5, Th.1.6]). (a) If P(2xI)~p(2x2) for
everyA>O, wherex j ,x2EXp, then IXllp~lx2Ip.

(b) If x E X p, then lexxlp is a nondecreasing function of ex ~ O.

(c) Iflxl p<1 thenp(x)~lxlp.

(d) If x n, XEXp, then Ixn-xlp ~ 0 if and only if p(ex(xn-x)) ~ ofor
every cx > o.

(e) If p is s-convex, then properties (a), (b), (c) remain valid if we
replace Ixlp by Ixl~.

DEFINITION 2.2 (See [8, Def. 1.7]). A modular p is called

(a) Right-continuous, if limJ.--+ 1+ p(2x) = p(x) for all x E X p,

(b) Left-continuous, iflim,\ --+ 1- p(2x) = p(x) for all x E X p,

(c) Continuous, if it is both right- and left-continuous.

It is easy to prove the following result (for s-convex modulars the result
is given in [8, Th. 1.8].

THEOREM 2.3. (a) If p is right-continuous then the inequalities Ixlp < 1
and p(x) < 1 are equivalent.

(b) If p is left-continuous then the inequalities Ixl p~ 1 and p(x) ~ 1
are equivalent.

We will need the following extension of the above theorem

PROPOSITION 2.4. If p is left-continuous then the inequality Ixlp ~ u
implies

p(x/u) ~ u.

The proof is straightforward.
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DEFINITION 2.5 (see [8, Def.5.1]). A sequence (Xk) of elements of X p is
called modular convergent to x E X p (p-convergent) if there exists a 2> 0
such that p(2(xk - x» --+ °as k --+ 00.

PROPOSITION 2.6 (See [8, Prop. 5.2]). p-convergence in Xpfollowsfrom
F-norm convergence in X P'

In the -sequel we shall deal with a particular class of modular spaces,
modular function spaces introduced in [3, 4]. Some examples of modular
function spaces will be listed below. Now we would like to give some
definitions and facts of this theory; for a more complete and more general
exposition of the theory the reader is referred to [3,4].

Let E be a compact subset of cn (n is a fixed natural number). By I we
will denote the a-algebra of subsets of E induced by the a-algebra of an
Lebesgue measurable subsets of en. By M(E) we will denote the space of
all I-measurable, C-valued functions defined on E; let S denote the
subspace of all I-measurable simple functions, If AcE then l A will stand
for its characteristic function.

DEFINITION 2.7. A set function p,: I --+ [0, 00] will be called a
a-subadditive measure or simply a a-submeasure if and only if

1. 1J(0) = 0,

2. 1J(U:= I An) ~ L:= I 1J(An) for any sequence of An E I,

3. 1J(A) ~1J(B) if A, BE I and A c B.

DEFINITION 2.8 (See [3, 4]). A functional p: M(E) x I --+ [0, 00 ] is
called a function modular if and only if the following conditions are
satisfied:

AI' p(O,A)=O for each AEI;

Az. If AEI, j,gEM(E), and If(x)I~lg(x)1 for all xEA then
p(j,A)~p(g,A);

A3. For every f E M(E), p(j, . ): I --+ [0, 00] is a a-submeasure;

A 4 • For every AEI p(a,A)--+O as a--+O+, where for the sake of
simplicity we write p(a, A) instead of p(al A , A) (p(a) stands for p(a, E»;

As. If p(a, A) =0 for an a>° (A E I) then p(!3, A) =0 for every
!3 > 0;

A 6 . p(a,') is order condtinuous on I for all a> 0, i.e., p(a, An) --+ 0
if An --+ 0;

A 7 • p(j, A)=sup{p(g, A): gES, Ig(x)1 ~ If(x)1 for each xEA}.

DEFINITION 2.9. A set A E I is said to be p-null if and only if
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p(a, A) =°for every a> 0. We say that f = g p-almost everywhere (p-a.e.)
if the set {x E E: f(x) >': g(x)} is p-null.

PROPOSITION 2.10. If A E I, f E M(E) then p(f, A) = ° if and only if
A n supp(f) is p-null, where supp(f) = {x E E: f(x) >': O}.

Let us put p(f) = p(f, E) for every f E M(E). By the above proposition
we may, identifying in M(E) functions which differ only on p-null sets,
regard a functional p: M(E) -+ [0, 00] as a modular. Namely we have the
following theorem.

THEOREM 2.11 (see [3,4]). The functional p:M(E)-+ [0, 00] defined
by p(f) = p(f, E) is a modular.

According to the general modular theory we can define a modular space

L p = {IE M(E): p(Af) -+ °as A -+ O+}.

We shall equip L p with an F-norm 1·1 p (s-norm 1·1 ~ (s-norm 1·1 ~ in the case
of s-convex p) induced by the modular p. It is evident in view of A4 that
L p contains all bounded measurable functions.

We note two very important results about modular function spaces.

THEOREM 2.12 (See [3, Prop. 2.6, Th.3.6]). (a) If fn' fEM(E),
E E I, and fn =t f in A then p(a(fn - f), A) -+° for all a> 0, i.e.,
l(fn- f) 1A l p -+0.

(b) L p is complete, i.e., L p is an F-space (Banach space in the convex
case).

EXAMPLE 2.13. Let {l be a nonnegative finite measure defined on I. Let
us consider a function cp: Ex IR + -+ IR + satisfying the following conditions:

(i) For every xEE cp(x,·) is a nondecreasing, continuous function
such that cp(x, 0) = 0, cp(x, u) >°for u > 0,

(ii) cp(', u) is a I-measurable, locally integrable function for all u;::' O.

It is easily seen that p(f, A) = SA cp(x, If(x)l) d{l is a function modular.
The modular space introduced by p is called the Orlicz-Musielak space L <p
(see [2,8]). If cp(x, u) = cp(u) is independent of the variable x we say that
L <p is an Orlicz space.

EXAMPLE 2.14. Let M be a family of countably additive nonnegative
measures on I and let cp be a function satisfying (i) and (ii) from
Example2.13. The modular I<p(f)=sup/-lEMfECP(x,lf(x)l)d{l may be
regarded as a function modular (see [1,3,4]).
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EXAMPLE 2.15. In [3] it was shown that spaces of functions which are
integrable with respect to linear or non-linear operator-valued measures
are the modular function spaces.

Recall that a function f E M(E) is said to have an absolutely continuous
F-norm if and only if for every sequence An E,E such that An! 0 there
holds If1Anip ~ O. In general not all members of L p have this property,
therefore we shall distinguish the class of functions having it and denote it
by EP' Clearly Ep is a linear subspace of L p; it plays a similar role as the
so-called space of finite elements in the theory of Orlicz spaces. The most
important properties of Ep are given in the following theorem.

THEOREM 2.16 (See [3, Ths.4.2, 4.3, 4.5, 4.6]). (a) E p is a closure of
the space of simple functions S.

(b) (Vitali theorem) If fn E E p' f E L p' and fn ~ f p-a.e. then the
following conditions are equivalent:

(i) fEEp and Ifn-flp~O,

(ii) For every IX> 0 p(IXfn' . ) are order equicontinuous, i.e., if A k E,E,

A k ! 0 then sUPnP(lXfn, Ad ~ 0 as k ~ 00.

(c) (The Lebesgue dominated convergence theorem) If fn ~ f
p-a.e. ([n, f E M(E)) and there exists a function g E E p such that
Ifn(x)1 ~ Ig(x)1 p-a.e.for every natural n then Ifn - flp ~ O.

DEFINITION 2.17. By L~ we shall mean a class of f E L p such that p(J, .)
is order continuous. The smallest linear subspace of L p which contains L~

will denoted by L ~.

Now we shall give the following

DEFINITION 2.18. We say that p satisfies the A2-condition if and only if
for each sequence of fn E L ~ the following implication holds: p(fn, .) are
order equicontinuous implies p(2fn' . ) are order equicontinuous.

The above-introduced condition generalizes the A2-condition used in the
theory of Orlicz-Musielak spaces. We have the following characterization
of modular function spaces L p with p satisfying the Arproperty.

THEOREM 2.19 (See [4, Th. 3.1.6]). If L~ is absorbing in L p (which
implies L~=Lp) then the following conditions are equivalent:

(a) p satisfies the A 2-condition,

(b) L~ is a linear subspace of L p,
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(c) Ep=L~=Lp,

(d) The modular convergence is equivalent to the F-norm convergence
in L p •

Our concept of the Lf rcondition, though useful and structural, cannot be
applied in many situations when some numerical calculations are needed.
This is why we shall pose another definition.

DEFINITION 2.20. We say that the function modular p satisfies the
Lf~-condition if to every d>O there corresponds a positive number c(d)
such that p(f + g) ~ c(d) whenever p(f) ~ d and p(g) ~ d. Let B(d) =
{fELp:p(f)~d}.

THEOREM 2.21 (See [8, Th. 6.2J). If p is a Lf 2-modular then there exists
ad> 0 such that

sup{p(f+g):f, gEB(d)}=c(d)< +00.

This partial result, however, does not answer the question when both
conditions Lf 2 and Lf ~ are equivalent. It is clear that Lf ~ implies Lf 2; the
inverse implication, however, may not hold (see Example 2.21.a).
Nevertheless, for a large class of modular function spaces, Orlicz and
Orlicz-Musielak spaces included, both conditions are equivalent.

EXAMPLE 2.21.a. Let X = [0, 1) and let (Xp)PE F\I be a countable disjoint
partition of X such that m(Xp ) = 2 -P, where m denotes the Lebesgue
measure on [0, 1). Let f!} be a £5-ring generated by all sets of the form
An Xp (p EN, A are measurable). For a measurable functionf: X --t IR and
E c [0, 1) measurable we define

p(f, E) = I (f IfIPdm)l
lP

+ sup {f Ifl Pdm;pE N}.
p=l Xp(")E Xp(")E

It is easy to verify that p is a function modular. Moreover, p does not
satisfy the Lf ~-condition. Indeed, put up = 2· 1xp for pEN. We observe that
p(up ) = 2 whde

p(2up );): f 2 p
• 2 P dm = 2 P --t 00

Xp

as p --t 00.

One can prove, however, that Lp=L~; i.e., p satisfies the Lf 2-condition.

In the sequel the following technical rest will be frequently used.
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LEMMA 2.22. Let p be a function modular and letfkELp. If there exists
a constant c > 1 such that

p(ckfd --+ 0(resp. k~1 p(ckfk) < +00, li~}~p [p(ckfd] 11k < 1)'
then for every bE [1, c)

Proof Fix bE (1, c) and put dk = max {(bjc)k, P(C'1k)}' Then p(bkfkjdk)
~p(ckfd~dk which gives Ibkfklp~dk' The rest of the proof is elementary.
In the case of s-convex p we can obtain a similar result for 1·1 ~.

3

Applying Theorem 1.6 we may prove the following

THEOREM 3.1. Let E be a compact, polynomially convex subset ofcn and
let p be a function modular. Denote Hp(E) = H(E) (\ L p. There exists a
constant c> 1 such that limk_ oo distp(ckf, Pk)=O, where Pk denotes the
class of all polynomials of degree ~ k and

for kE N.

Proof By Theorem 1.6 for every function f, holomorphic in a
neighborhood of E, there holds lim supk_ 00 [dist II IIE(f, Pk)] 11k < 1. This
means that there exists a constant b < 1 such that II f - pk II E ~ bk for some
Pk E Pk and k ~ ko. Let c> 1 be such that c· b < 1. By Az and A4 of
Definition 2.8 we get

distp(ckf, Pk)~ p(ck(f - pd) ~ p(llck(f - Pk)IIE) ~ p(ck IIf - PkIlE)

~p(Ck .bk)~p((cb)k)--+O as k--+ 00.

This completes the proof.

By similar reasoning and using Remark 5.2 in [10] one can easily obtain
the following result.

Remark 3.2. Let E be a compact subset of c n and left f be an entire
function. Then for every c> 1, limk_oo distp(ckf, Pk)=O.

Remark 3.3. Assume that p, E are such as in Theorem 3.1. Assume
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furthermore that for every aE(O, l)limsuPk~oo[p(ak,E)]llk<1. If
f E Hp(E) then lim SUPk~ 00 [distl.1p(J, Pk)] Ilk < 1.

Proof Using the estimation from Theorem 3.1 we have

where a = c .b < 1.

By the assumption on p and by Lemma 2.22 we have
lim SUPk ~ 00 [If - hi p] Ilk < 1 which gives the result.

The next theorem gives a partially converse result to Theorem 3.1.

THEOREM 3.4. Let p be a function modular. Let E be a compact subset
of en and let jJ. ~ p (i.e., jJ. equals zero on p-nul/ sets) be a Borel measure such
that (E, jJ.) satisfies L *. If for a function f E L p we may choose a constant
d > 1 and an increasing sequence k, E N such that k i -+ +00,

lim SUPi~oo ki+l/ki< 00, and L:;:I distp(dkf, Pk)< 00 thenfEHp(E).

Proof By Lemma 2.22 we can choose c E (1, d) such that
L:;:ldistl.lp(ckf,Pk)<oo. Put dj=distl.!p(ckj,Pk)+2-j for j=I,2, ....
Then to every j E N there corresponds a polynomial Pj E P k

J
such that

IckJ(f - pj)l p< dJ" We note that

IckJ(pj+l- p)lp~ IckJ(f - pj+dl p+ IckJ(f - p)lp~ Ickj
+ 1(f - PJ+dl p

+ Ickj(f - p)l p~ dJ+1+ dJ"

Consequently, in view of Theorem 2.1.c, for j sufficiently large we get

p(ckJ(Pj+ 1- p) ~ ickJ(pj+ 1 - pj)l p~ dJ+1 +dJ"

Now define the set

D = {t E E: sup ckJ IPH 1(1) - pit)1 = +oo}.
jEN

We shall prove that jJ.(D) = O. For j, n EN put

EJ,n = {t E E: ckJ IpJ+l(t) - pJ(t)1 > n}

and En = UI<~n EJ,n' It is easy to see that En:=; En + 1 and n:= 1 En = D. Let
us fix a> 0; for n ~ a we have

p(a, EJ,n) ~ p(n, EJ,n) ~ p(ckJ(PJ+1 - p), Ej,n) ~ p(Ckj(Pj+ 1 - pJ)

~dj+dJ+l'
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co co co

p(rx, En) ~ L p(rx, EJ,n) ~ L dj + L dj +1 --* 0

25

}=n j=n

as n --* 00, because LJ: 1 dJ < 00.

Since Dc En for every n E N, it follows that p(rx, D) ~ p(rx, En) --* 0 and
consequently p(rx, D) = 0 for all rx > O. The latter fact implies f.l(D) = 0, since
j1 ~ p. Hence by the L *-condition, for every b> 1 there exist M> 0 and an
open neighborhood U of E such that

sup !Ck1(PJ+l(t)- pit))1 ~bk1+1·M for j= 1, 2, ....
IE U

Choose b> 1 such that b/C1
/
k < 1, where k > limJ sup kj+ ;/kr Compute

bk1+1 bk1+1 ( b )k1+1
sup IPJ+l(t)- pit)1 ~M-k-~M (k/k. ).k ~M ~
lEU c 1 C11~1 1+ 1 C'

for j sufficiently large. This means that the series
co

Pl + L (Pj+l- PJ)
J~l

is uniformly convergent in U to a holomorphic function 1 This implies by
Theorem 2.12a, that jPJ 1E -]1 E l p--* O. Hence, since jP

J
- lip --* 0,/ = ]1 E

p-a.e. which gives] = 11 E j1-a.e. by the absolute continuity of f.l with
respect to p. The proof of Theorem 3.4 is fully completed.

4

Let us consider the following condition:

(4.1) There exists K> 1 such that p(2f) ~ Kp(f) for every f E L p;

(4.2) To every b > 1 there corresponds c > 1 and koE N such that
p(ckf) ~ bkp(f) for every IE L p and k ~ k o.

LEMMA 4.3. Conditions (4.1) and (4.2) are equivalent.

Proof If p satisfies (4.1) then its is easy to show by the induction that
p(2nf) ~ Knp(f) for every fE L p and n EN. Fix b> 1. If b ~ K then we can
put c = 2 and k o= 1. So assume that bE (1, K) and choose k oE N such that
bko~K. Put c=2 1

/
2ko and fix k~ko. We can write k=mko+ P where

m, pEN, m ~ P, and P < ko. Compute

bkp(f) ~ bmkOp(f) ~ K"'p(f) ~ p(2"'f) = p(C2mk0f) ~ p(cmko +~f) = p(ckf).
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To prove the converse, fix an arbitrary b> 1. By (4.2) we get constants
koEN and c> 1 such that p(ckf)~bkp(f) for k~ko, fELp. Choose
k 1 ~ k o such that Ck1 ~ 2. Thus

p(2f) ~ p(ck1j) ~ bk1p(f),

which completes the proof.

Using Lemma 4.3 we can prove the following

THEOREM 4.4. Let p, fl, and E be the same as in the assumptions
of Theorem 3.4. Assume additionally that p satisfies (4.1) and that there
exists a strictly increasing sequence (k) of natural numbers such that

lim sup}~ <Xl kJ+ 11k] ~°and

(4.5) lim sup [distp(j, Pk)J 1
/
kJ< 1.

j-+ cD

Then f E Hp(E).

Proof In view of Theorem 3.4 it suffices to find a constant c> 1 such
that

<Xl

I distp(ckf, Pk) < 00.
]~1

From (4.5) it follows that there exists dE (0,1) such that distp(j, Pk) ~ d kJ

for j sufficiently large. Choose b> 1 such that bd< 1. Then

bkJ distp(j, Pk) < (db )kJ

and by Lemma 4.3 we may find c> 1 such that

distp(ckf, Pk) ~ bkJ distp(j, Pk) < (bd)kJ.

Thus the series

<Xl

I distp(ckf, Pk)
]~1

is convergent, which completes the proof.

Remark 4.4.a. Note that the F-norm 1·1 p induced by an arbitrary
function modular p may be regarded itself as a function modular. It is clear
that 1·l p satisfies (4.1). Hence, we may replace (4.5) by

(4.6) lim sup[distr_rp(j, Pk)J l/kJ< 1
}- 00
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and Theorem 4.4 remains valid. In case of Orlicz spaces Lip with q;
satisfying the Ll 2-condition such a result was given in [13].

We would like to stress that, in general, it is much easier to work with
conditions imposed on modulars than with conditions involving F-norms
because of their indirect definition. However, in some cases both conditions
(4.5) and (4.6) are equivalent.

PROPOSITION 4.7. If p satisfies (4.1) then (4.6) is equivalent to (4.5).

Proof Since p(f) ~ Ifl p < I holds, it follows that (4.6) always implies
(4.5). To prove the converse let us choose dE (0, 1) such that distp(f, Pk) < dk

for k ? k o. There exists a sequence of Wk E Pk such that p(f - Wk) < dk. Let
b> I be so chosen that bd < 1. By Lemma 4.3 there exists c> I and k oE N
such that for k? ko

as k --> 00.

The rest of the proof will be divided into two parts.

(a) Let p be s-convex, s E (0, I]. Since p(ck(f - wk)) ~ 1 for large k,
then

and

Hence,

lim sup[distl.1p(f, PdJ 11k ~ lieS < 1.
k~ oc

(b) Suppose p is not s-convex. Put q=max(bd, lie), then we have
p((f - Wk)/qk) ~ qk and consequently if - wkl p ~ qk. Hence,

lim sup[dist! Ip(f, Pk)] 11k ~ q < 1.
k ~ 00

PROPOSITION 4.8. Assume that to every a> I there corresponds d> 0
such that

(4.9)

If there exists c > °such that distp(ckf, Pk) --> 0 then

lim sup[dist, Ip(f, Pk)] 11k < 1.
k ~ 00
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Proof By Lemma 2.22 we can find bE(I,c) such that distl.I/Vf,Pk)
-40 and consequently Ibk(f - Pk)l p -40 for some PkEPk. By (4.9) we get

If- Pkl p (1 + d)k ~ Ibk(f - Pk)l p < 1

for k sufficiently large.

Let us note that every s-homogeneous norm satisfies (4.9) with
1+ d = cS

• To obtain a sufficient condition for (4.9) formulated in terms of
a modular we define the following function:

w(t) = sup{p(if)/p(f): f E L p \ {O} }.

PROPOSITION 4.10. If to every c> 1 there corresponds d> 0 such that

(4.11 ) (
1+d)w -c- . (1 +d)~ 1,

i.e., YEP.

then (4.9) holds.

Proof Fix c> 1 and choose d > 0 such that (4.11) holds. Put

L = (1 + d) -1 . {a> 0: p(cfta) ~ a}

and

P= {f3>O:p(ftf3)~f3}.

We claim that L c P. Indeed, let y E L; hence,

(1+ d C
f ) (1 +d) ( cf )

p(f/),.)=p -c-'y(l+d) ~w -c- P y(l+d)

(
1+d)

~w -c- (1 +d)y~y,

We have (1 + d) -1 Icflp = inf L:9 inf P = Ifl p which gives (4.9).

Using Theorem 4.4, Remark 4.4a, and Propositions 4.8 and 4.10 we
obtain immediately the following result which generalizes Theorem 2.3 of
[5].

THEOREM 4.12. Let p, j1, and E be the same as in the assumptions
of Theorem 3.4. Let f E L p and let us assume additionally that p satisfies
(4.11 ) (in particular p can be s-convex or it can satisfy (4.9)). If
limk~<Xl distp (c'1, Pd=O thenfEHp(E).

Now we will show a possible method of application of the above.
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EXAMPLE 4.13. Let E c C be a sphere of radius r E (0, 1) and center at
zero. Consider a function IE L p defined by the formula

00

I(x) = I adk(X)'
k~O

where ak E C, Ik are measurable functions defined in C, and the convergence
of the series is understood in the sense of 1·1 p' Assume Ike E are
measurable, Ik(X) = x k for every x Eh, and lakl ~ M for all kEN. We
would like to find out when I may be extended to a holomorphic function
in a neighborhood of E. Let p, be the length measure in E and let p be a
function modular satisfying (4.11) such that p, is absolutely continuous with
respect to p. By Example 1.2 (E, p,) satisfies the L *-condition in this case.
In view of Theorem 4.12 it suffices to find d> 1 such that distp(dkj, PrJ --+ 0
as k --+ 00. Denoting

we get

k

Wk= I a,x l

1=0

and

distp(dkj, Pk)~ p(dk(f - W k)) ~ p(dk(f - W k), Ik)+ p(dk(f - Wk), Dk)

~ p (d
k ,=F+ 1 la,l r

l

) + p(dk(f - wd, Dk)

~ p(Mr(l - r) -l(dr)k) + p(dk(f - Wk), Dk).

The first term on the right tends to °for dr < 1. The question of analytic
extension of I has been, therefore, reduced to the question whether
p(dk(f - wk), Dk) tends to zero. The latter problem may be solved in
various ways depending on the form of the modular. For instance,
let p(f) = SE <p( III) dp, be an Orlicz modular with <p satisfying the
LIz-condition. Observe that if there exists a function gEL p such that
I/(x)-wk(x)1 ~ Ig(x)1 for xEDk and sufficiently large kEN, then

where i/[ is the LIz-constant. We conclude then, that in order to prove
IE H p(E) it suffices to check whether SDk <p( Igl ) dp, tends to zero faster than
i/[k tends to infinity.
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5

Let p be a function modular and Z c L p; define R(Z) = inf{r(f):
fEZ\{O}}, where r(f)=sup{lifl p: t~O}. Similarly we may put Rp(Z)=
inf{r/f):fEZ\{O}}, where rp(f)=sup{p(if): t~O}.

For an arbitrary function modular p we have

Proof Assume R(Lp ) = 0; fix e E (0, 1), and choose a function
f E L p \ {O} such that r(f) < e. Then we have

rp(f) = sup{p(if): t~O}:::;sup{lifl p : t ~ O} = r(f) < e

and by the arbitrariness of e we get Rp(Lp)=O. Let Rp(Lp)=O; to every
e>O there corresponds a functionfELp\{O} such that p((t/e)f)<e for
every t~O. Hence, liflp<e for arbitrary t~O and consequently R(Lp)=O.

In the sequel we will need the following two definitions.

DEFINITION 5.2. A non~p-null set A E L is called an atom if and only for
every BEL, BcA there holds either B is p-null or p(a, B)=p(a, A) for all
a>O.

DEFINITION 5.3. We say that a function modular p is atomless in
£1(£1 c £, £1 EL, £1 is not p~null) if and only if there is no atom which
is included in £1'

Let us consider the following conditions:

(C 1 ) If AnEL and Ant0 then limn->oo(sup{p(a,An):a~O})=O,

(C2 ) There exists a constant d>O such that sup{p(a,A):a~O}~d
for every A E L which is not p-null.

Theorem 5.9 will state that, under some assumptions on p, there exist in
L p some quasi-analytic functions (cf. Def. 5.7) that cannot be extended to
hoiomorphic functions. In the proof of that result we apply the "lethargy"
theorem of Bernstein for F-spaces (Th. 5.6). To apply this theorem we have
to assume that R(Z) > 0 form some nontrivial subsets Z of L p • It follows
immediately from the definition that R(Z) = 00 for Z #- {O} and s-convex
modulars (0:::; s:::; 1). Condition (Cd, which implies R(Lp ) = 0, is, for
instance, satisfied for the modular

p(f) = {''' rjJ(f(x)) dx,
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where ~(O)=0, ~ is nondecreasing even, nonnegative, and lim u ~ 00 ~(u)< 00.

R(Z) > 0 whenever (C 2 ) holds. The latter is, for example, satisfied by Orlicz
modulars for which

lim ¢(u) = 00.
u~ 00

PROPOSITION 5.4. If p satisfies (C I) and there is a set E leE such that
p is atomless in E 1 then Rp(Lp) = O.

Proof Since p is atomless in E 1 we can choose a sequence (An) of
.E-measurable subsets of E 1 such that All t 0 and All is not p-null for
n=1,2, .... Put VII = {fES:f1E\An=0}. Observe that VII are nontrivial
subspaces of L p • For every fE VII there holds

rp(f) = sup{p(if): t ~ O} = sup{p((f, All): t ~ O} ~ sup{p(:x, All): IX ~ O}.

Hence,

Rp(L p) = inf{rp(f): f E L p\ {O}}

~ inf {r p(f): fE IlQI VII \ {O}} ~ sup {p(IX, All): IX ~ O}

PROPOSITION 5.5. If p satisfies (C 2 ) then R p(Z) > 0 for every nontrivial
subset Z of L p.

Proof Let fELp\{O}, denote AIl={XEE:lf(x)l~l/n}. Note that
(All) is nondecreasing and All are not p-null for n ~ no. Then for n ~ no we
have

Hence,

and consequently Rp(Lp)~ d > O.

Let us present the following version of Bernstein's "lethargy" theorem.

THEOREM 5.6 (see [7]). Let (Y, 1·1) be an F-space and let VI ~ V2 ~ ...

~ Y be a nested sequence of distinct, finite-dimensional vector subspaces of Y.

640/58jl·3
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Assume that
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Then for every decreasing sequence (dn ) of nonnegative real numbers with
limn dn = °there exists y E Y such that distl.!p(y, Vn ) = dn for n sufficiently
large.

We shall use the above theorem to generalize Theorem 5.2.2 from [13 J
to the case of modular function spaces.

DEFINITION 5.7 (See [11, Def.4.1J). Given a Borel subset E of the
space en, a function f E L p is said to be quasi-analytic on E (in the sense
of Bernstein) if there exists an increasing sequence (k

J
) of positive integers

and polynomials PJ with deg PJ~ kJ (j = 1, 2, ... ) such that

(5.8) lim sup [If - pjlpJ Ilk) < 1.
J~ co

It is interesting to study when a quasi-analytic function belongs
to H p(E). By Remark 4.4.a this holds for (E, {l) satisfying L* and
lim sUPh co kJ+I1kJ< 00. In the next theorem it will be shown that this
assumption on the sequence (k

J
) in Remark 4.4.a is essential.

THEOREM 5.9. If E is a polynomially convex, compact subset of en,

and

lim sup kJ+I1kj= 00,
J~ co

lim sup[p(ak)JI/k < 1
k~ co

ReQI pk»o,

for every a E (0, 1)

then there exists a quasi-analytic function f E L p\Hp(E).

Proof We note that by assumption on the sequence (kJ there is a
subsequence (kJJ of (kj ) such that limm ~ co kjm+Jkjm = 00. For simplicity
we leave (kj ) to be the subsequence. Fix a E (0, 1). By Theorem 5.6 there
exists a function f E L p such that for k ~ ko, distl.1p(f, Pk) = dk, where
dk=ak) as kJ~k<kJ+I' for j= 1, 2, .... We note that

lim [dist!.! (f, Pk)J I/~ = lim (ak)) Ilk) = a < 1.
J-OO P I j-"'OO



POLYNOMIAL APPROXIMAnON

On the other hand,

lim sup [distl_1Jf, Pk)J 11k ~ lim sup [distl_1p(f, P kj + l
- dJIlkj +!-1

k -'" 00 J -1>(:1:)

~ lim ak,lk/+I-I = 1.
j -+ 00

33

By Remark 3.3 f does not belong to H p(E).

Let us denote the set of all quasi-analytic functions by Bp(E). It is known
that, if the set of all polynomials is dense in L p, then L p= Bp(E) + Bp(E)
(see [11, Prop. 1.4]). This can be surprising in comparison with the
following strong identity principle.

THEOREM 5.10 (See [l1J in the case of Orlicz spaces). Assume that E
is a connected open set in IW, p a function modular, and let J1 be a Borel
measure on E, J1 ~ p. Assume furthermore that for each compact interval
1= [au blJ x ... x [a", b"J contained in E the pair (l, J1) satisfies L*. Let
fEB p(E). Iff = 0 on a subset F of E such that (F, J.1) satisfies L * then f = 0
J1-a.e. on E.

Proof At first suppose that E is a compact interval included in [RH.

Since fEBp(E) there exists a strictly increasing sequence of integers k
J

,

polynomials PJ with deg PI ~ kJ and a constant a E (0, 1) such that
If - p) p ~ a k

/ for j sufficiently large. We note that

which gives

for j sufficiently large.

Choose b > 1 such that ab < 1. Since any F-norm satisfies condition (4.1),
by Lemma 4.3, there exists c E (1, b) such that

(5.11 )

Let D = {t E F: SUPJEN Ickjpit) I= +oo}. We claim that J1(D) = O. To prove
this define for j, n E N

and
l=n

Using (5.11), by a similar reasoning as in Theorem 3.4, we can show that
for every a>O, limn~ocp(a,Fn)=O which gives p(a,D)=O and finally
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p(D)=O. Now choose dE(1, c). By condition L* there exists a closed sub­
interval 10 of E and a constant M> 0 such that

sup !pj(t)l;( M(djc)k,
t E 10

for j sufficiently large.

Hence, the sequence Pj tends uniformly to 0 in 10 which gives f = 0 p-a.e.
on 10 , Let Jo be a maximal element of the family f of all compact subinter­
vals 1 of E such that 10 eland f = 0 p-a.e. on 1. We claim that Jo= E.
Indeed, since f = 0 p-a.e. on Jo we have IPi IJo l ;( a k

; for j sufficiently large
and since (Jo, p) satisfies L* we can again choose a compact interval J
such that Jo c int J and Pi tend uniformly to 0 in J as j -+ 00. Thus f = 0
p-a.e. on J c E, hence J n E = Jo. This is, however, possible only if Jo= E
as claimed.

Thus, we can prove our theorem in the case when E is a compact
interval. The rest of the proof proceeds along similar lines as in [11,
Lemma 5.1, Corollary 5.2, and Theorem 5.4] so we omit details.
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